Processing math: 65%

작성중...


INDEX



Uniform Random Variable

Exponential Random Variable

Erlang Random Variable

Gaussian Random Variable

Bivariate Gaussian Random Variable

Gaussian Random Vector

Beta Random Vector




Uniform Random Variable


X is a Uniform(a,b) random variable if the PDF of X is

fX(x)={1/(ba)axb0otherwise

where the two parameters are b>a.

FX(x)={0xa(xa)/(ba)a<xb1x>b

Expected valueE[X]=(b+a)/2.

VarianceVar[X]=(ba)2/12.


PDF of Uniform DistributionPDF of Uniform Distribution (WIKIPEDIA)

CDF of Uniform DistributionCDF of Uniform Distribution (WIKIPEDIA)



Exponential Random Variable


X is a exponential(λ) random variable if the PDF of X is

fX(x)={λeλxx00otherwise.

where the parameter λ>0.

FX(x)={1eλxx00otherwise.

Expected valueE[X]=1/λ.

VarianceVar[X]=1/λ2.


PDF of Exponential DistributionPDF of Exponential Distribution (WIKIPEDIA)

CDF of Exponential DistributionCDF of Exponential Distribution (WIKIPEDIA)



Erlang Random Variable


X is a Erlang(n,λ) random variable if the PDF of X is

fX(x)={λnxn1eλx(n1)!x00otherwise.

where the parameter λ>0and the parameter n1 is an integer.

Expected valueE[X]=nλ.

VarianceVar[X]=nλ2.


PDF of Erlang DistributionPDF of Erlang Distribution (WIKIPEDIA)

CDF of Erlang DistributionCDF of Erlang Distribution (WIKIPEDIA)



Gaussian Random Variable


X is a Gaussian(μ,σ) random variable if the PDF of X is

fX(x)=12πσ2e(xμ)2/2σ2

where the parameter μ can be any real number and the parameter σ>0

Expected valueE[X]=μ.

VarianceVar[X]=σ2.


PDF of Normal DistributionPDF of Normal Distribution (WIKIPEDIA)

CDF of Normal DistributionCDF of Normal Distribution (WIKIPEDIA)



Bivariate Gaussian Random Variable


Random variables X and Y have a bivariate Gaussian PDF with parameters μ1,σ1,μ2,σ2, and ρ if

fX,Y(x,y)=exp((xμ1σ1)22ρ(xμ1)(yμ2)σ1σ2+(yμ2σ2)22(1ρ2))2πσ1σ21ρ2

where μ1 and μ2 can be any real numbers, σ1>0,σ2>0, and 1<ρ<1 .





Gaussian Random Vector


X is the Gaussian(μX,CX) random vector with expected value μX and covariance CX if and only if

fX(x)=1(2π)n/2[det(CX)]1/2exp(12(xμX)TC1X(xμX))

where det(CX), the determinant of CX, satisfies det(CX)>0.




Beta Random Variable


X is a Beta(α,β) random variable if the PDF of X is

fX(x)=Γ(α+β)Γ(α)Γ(β)xα1(1x)β1=1B(α,β)xα1(1x)β1(

where the parameter 0 \leq x \leq 1, and shape parameters \alpha, \beta > 0.

\Gamma(z) = \int_0^{\infty}x^{z - 1}e^{-x}\mathrm{d}x \quad \quad (\Gamma(n) = (n - 1)! , \text{if n is positive integer})..


\text{Expected value} \quad E[X] = \frac{\alpha}{\alpha + \beta}.

\text{Variance} \quad Var[X] = \frac{\alpha \beta}{(\alpha + \beta )^2(\alpha + \beta + 1)}.


PDF of Beta DistributionPDF of Beta Distribution (WIKIPEDIA)

CDF of Beta DistributionCDF of Beta Distribution (WIKIPEDIA)



Proof - Gaussian




X is a Gaussian(\mu, \sigma) random variable if the PDF of X is

f_X(x) = \frac{1}{\sqrt{2\pi \sigma^2}}e^{-(x - \mu)^2/2\sigma^2}


Expected Value

\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x - \mu)^2/2\sigma^2}\mathrm{d}x\\


\text{Let}\quad \omega = \frac{x - \mu}{\sqrt{2\sigma^2}}, \mathrm{d}\omega = \frac{\mathrm{d}x}{\sqrt{2\sigma^2}}\\


\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\omega^2}\sqrt{2\sigma^2}\mathrm{d}\omega\\ =\frac{1}{\sqrt{\pi}}\int_{-\infty}^{\infty}e^{-\omega^2}\mathrm{d}\omega\\


\begin{align} \bigg\{\int_{-\infty}^{\infty}e^{-\omega^2}\mathrm{d}\omega\bigg\}^2 &= \int_{-\infty}^{\infty}e^{-x^2}\mathrm{d}x \cdot \int_{-\infty}^{\infty}e^{-y^2}\mathrm{d}y\\ &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2 + y^2)}\mathrm{d}x\mathrm{d}y\\ \end{align}


\text{Let}\quad x = r\cos{\theta}, \quad y = r\sin{\theta}\\


\begin{align} \int_{0}^{2\pi}\int_{0}^{\infty}e^{-r^2}det(J(r,\theta))\mathrm{d}r\mathrm{d}\theta &= \int_{0}^{2\pi}\int_{0}^{\infty}e^{-r^2}r\mathrm{d}r\mathrm{d}\theta\\ &= 2\pi\int_{0}^{\infty}re^{-r^2}r\mathrm{d}r\\ \end{align}


\text{Let}\quad s = -r^2, \quad \mathrm{d}s = -2r\mathrm{d}r\\


\begin{align} 2\pi\int_{0}^{-\infty}-\frac{1}{2}e^{s}\mathrm{d}s &= 2\pi\int_{-\infty}^{0}\frac{1}{2}e^{s}\mathrm{d}s\\ &= \pi\int_{-\infty}^{0}e^{s}\mathrm{d}s\\ &=\pi e^s \Big|_{-\infty}^{0}\\&=\pi \end{align}


\begin{align} \bigg\{\int_{-\infty}^{\infty}e^{-\omega^2}\mathrm{d}\omega\bigg\}^2 = \pi, \quad \int_{-\infty}^{\infty}e^{-\omega^2}\mathrm{d}\omega = \sqrt{\pi} \end{align}


\begin{align} \frac{1}{\sqrt{\pi}}\int_{-\infty}^{\infty}e^{-\omega^2}\mathrm{d}\omega = 1 \end{align}


\begin{align} \therefore \int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x - \mu)^2/2\sigma^2}\mathrm{d}x = 1 \end{align}


\begin{align} E[X] &= \int_{-\infty}^{\infty}x\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x - \mu)^2/2\sigma^2}\mathrm{d}x \\ &= \int_{-\infty}^{\infty}[x - \mu + \mu]\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x - \mu)^2/2\sigma^2}\mathrm{d}x\\ &= \int_{-\infty}^{\infty}(x - \mu)\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x - \mu)^2/2\sigma^2}\mathrm{d}x + \mu\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x - \mu)^2/2\sigma^2}\mathrm{d}x\\ &= \int_{-\infty}^{\infty}(x - \mu)\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x - \mu)^2/2\sigma^2}\mathrm{d}x + \mu \quad \quad \bigg( \because \int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x - \mu)^2/2\sigma^2}\mathrm{d}x = 1 \bigg) \\ &= \frac{-\sigma^2}{\sqrt{2\pi\sigma^2}}\int_{-\infty}^{\infty}-\frac{(x - \mu)}{\sigma^2}e^{-(x - \mu)^2/2\sigma^2}\mathrm{d}x + \mu\\ &= \frac{-\sigma^2}{\sqrt{2\pi\sigma^2}}\bigg[ e^{-(x - \mu)^2/2\sigma^2}\bigg]_{-\infty}^{\infty} + \mu\\ &= \frac{-\sigma^2}{\sqrt{2\pi\sigma^2}}\bigg[ 0 - 0\bigg] + \mu\\ &= \mu \end{align}


Variance

Var[X] = \int_{-\infty}^{\infty}(x - \mu)^2\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x - \mu)^2/2\sigma^2}\mathrm{d}x\\


\text{Let}\quad \omega = \frac{x - \mu}{\sqrt{2\sigma^2}}, \mathrm{d}\omega = \frac{\mathrm{d}x}{\sqrt{2\sigma^2}}\\


\begin{align} Var[X] = \int_{-\infty}^{\infty}2\sigma^2 \omega^2 \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x - \mu)^2/2\sigma^2}\mathrm{d}\omega\\ =\frac{2\sigma^2}{\sqrt{\pi}}\int_{-\infty}^{\infty}\omega^2 e^{-\omega^2}\mathrm{d}\omega\\ \end{align}


\text{Intergration by parts by}\quad u = \omega , \quad v = -\frac{1}{2}e^{-\omega^2}, u^{\prime} = 1, v^{\prime} = \omega e^{-\omega^2}\quad \quad \bigg( \int uv^{\prime} = uv - \int u^{\prime}v \bigg)\\


\begin{align} Var[X] &= \frac{2\sigma^2}{\sqrt{\pi}}\bigg\{ \bigg[-\frac{1}{2}\omega e^{-\omega^2}\bigg]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} - \frac{1}{2} e^{- \omega^2} \mathrm{d} \omega \bigg\}\\ &= \frac{2\sigma^2}{\sqrt{\pi}}\bigg\{ \bigg[0 - 0\bigg] - \frac{1}{2}\sqrt{\pi} \bigg\}\\ &= \sigma^2 \end{align}



'Probability' 카테고리의 다른 글

Families of Discrete Random Variables  (0) 2017.03.22

+ Recent posts